
FORMAL VERIFICATION OF A LAZY ABSTRACTION MODEL CHECKER
Arthur Correnson
arthur.correnson@ens-rennes.fr

Lazy Abstraction Model Checking

Lazy Abstraction Model Checking is a verification technique to check that
a program is safe to execute by exhaustively exploring all executions of an
abstract model of the program. This model contains less information and is
easier to verify. The model is incrementally refined during the verification
process if it is found to abstract away too much information. We compute
a model by encoding the semantics of the program as first-order formulas.
Exploring the abstraction can then be reduced to satisfiability checking.

Goals
▶ Develop a lazy abstraction model checker that is:
▶ reasonably efficient
▶ formally proved to be correct

Method
▶ Implementation of the model checker in the Coq proof assistant
▶ Formal proof of the model checker correctness. For any program p

check(p) = Ok ⇒ ∀(π : path),¬ReachError(p, π) (1)
check(p) = Error(π) ⇒ ReachError(p, π) (2)

▶ The model checker is extracted into correct and executable OCaml code

Architecture of the Model Checker

(1) IMP Deep embedding of the source
language (IMP) and formalization of its
semantics.

(3) CFA Implementation of Control Flow
Automaton and formalization of their
semantics.

(5) SMT Logic Deep embedding of a
first-order logic and formalization of its
semantics.

(2) Compilation Semantics-preserving
compiler from IMP to Control Flow
Automaton (CFA). The proof is performed
using simulation diagrams.

(4) Abstraction Loop Exploration of an
abstraction of the CFA. Generates first-order
formulas and send requests to external
provers.

(6) Interface with provers Communication
with external theorem provers. A certified
validator (SMTCoq) can be used to verify the
outputs of the provers at runtime.

A Purely Functional Algorithm

We model the internal state of the model checker as an immutable record
MC_state. The progress of the model checker is reported by an algebraic
datatype MC_status.
Inductive MC_status :=

Next (_ : MC_state) | Error (_ : path) | Done.

A function start creates an initial state from a source program and a pure
function step updates the internal state.
Definition start : IMP -> MC_state.
Definition step : MC_state -> MC_status.

Exploring the Abstraction

Given a set of states E and a program instruction i, Post(E, i) is the set of
i-successors of E.

Post(E, i) := {s′ | ∃s ∈ E, s →i s′}
We implement an operator post that is proved to compute an
over-approximation of Post for any instruction i and set of states encoded
as a formula φ.

Post(JφK, i) ⊆ Jpost(φ, i)K
The post operator is called by the step function to explore the abstract
model of the program.

Maintaining Invariants

The correctness of the model checking algorithm is ensured by means of
invariants. We gather all the required invariants into a predicate Inv over
MC_state. The initialization and iteration functions are proved to
maintain the invariants:

Inv(start(p)) (3)
Inv(s) ⇒ step(s) = Next(s′) ⇒ Inv(s′) (4)

Safety of the source program is proved to follow from Inv:
Inv(s) ⇒ step(s) = Done ⇒ ∀(π : path),¬ReachError(p, π)

Similarly, we prove that errors are correctly reported:
Inv(s) ⇒ step(s) = Error(π) ⇒ ReachError(p, π)

Termination over Completeness

▶ We iterate the function step for a fixed number n of iterations
▶ A Timeout message is raised if the model checking does not terminate

after n steps
▶ Termination is then enforced but we lose completeness

